$$\frac{4u + 3}{2}$$
1 (a) $6u, 4u, v, v \in Like torus (having some Variable part) = -2y =$

$$\frac{42x}{2} \frac{2}{2} \frac{5}{2} \frac{1}{2} \sum_{x \neq yand} \left(\begin{array}{c} (a) & g(x+6) \neq 2x+12 \end{array} \right) = (a(b+c)=ab+ac) \\ (b) & g(x+3) \neq 8x+12 & (c) & g(x-2) \neq 4x-8 \\ (m) & 5 & (2x-2y) \neq 10x-10y & (r) & 7((4x+x^2) \neq 28x+7x^2) \\ (a) & 9x((x+y) \neq 9x^2+2xy) & (d) & 4x((3x-2y) \neq 12x^2-8xy) \\ (b) & gx^2 & (3-2y) \neq 6x^2-4x^2y & (m) & 2x^2y & (y-2x) \Rightarrow 2x^2y^2-4x^3y \\ (b) & gx^2 & (3-2y) \neq 6x^2-4x^2y & (m) & 2x^2y & (y-2x) \Rightarrow 2x^2y^2-4x^3y \\ (b) & gx^2 & (3-2y) \neq 6x^2-4x^2y & (m) & 2x^2y & (y-2x) \Rightarrow 2x^2y^2-4x^3y \\ (b) & gx^2 & (3-2y) \neq 6x^2-4x^2y & (m) & 2x^2y & (y-2x) \Rightarrow 2x^2y^2-4x^3y \\ (c) & 4x((x-1)) \Rightarrow 4x^2-4x \\ & \frac{2x\cdot 2-6}{2} \\ 1 & (a) & 2(5+x) + 3x & \Rightarrow 10 + 2x+3x & \Rightarrow 10 + 5x \\ (c) & 4x((x-1)) \Rightarrow 4x^2-4x \\ & \frac{2x\cdot 2-6}{2} \\ 1 & (a) & 2(5+x) + 3x & \Rightarrow 10 + 2x+3x & \Rightarrow 10 + 5x \\ (b) & 2x + 3(2x+3) & \Rightarrow 2x+3+4x + 6 \Rightarrow 6x + 5y \\ (c) & 4x(2x-4) + 3y & yx + 3x + 3x + 6 \Rightarrow 6x + 5y \\ (d) & 7y + y((x+4y) + 2(x-3)) & = 4xx + 160 + 2x - 6 \\ & + 6x + 15y \\ (d) & 3x(4y-4) + 4(3xy+4x) \\ & + 12xy - 12x + 12xy + 16x & \Rightarrow 24xy + 16 \\ (d) & 3x(4y-4) + 4(3xy+4x) \\ & + 12xy - 12x + 12xy + 16x & \Rightarrow 24xy + 16 \\ \end{array}$$

$$\frac{-\xi_{4} \cdot 2 \cdot 7}{(4) + 11^{3}} (e) + 10^{5} (4ndex form)$$

$$2)(4) + 10^{4} = 10 \times 10 \times 10 \times 10 \Rightarrow 10,000 (b) + 7^{3} = 7 \times 7 \times 7 \Rightarrow 3433$$

$$3)_{0}^{*} \cdot 6^{4} = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \Rightarrow 2^{6} \qquad 3\frac{2 \times 4^{3}}{3 + 3}$$

$$3)_{0}^{*} \cdot 6^{4} = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \Rightarrow 2^{6} \qquad 3\frac{2 \times 4^{3}}{3 + 3}$$

$$(b) + 2^{4} \cdot 3 = 3^{5} \qquad 3\frac{2 \times 7}{3 + 3}$$

$$(c) + 400 = 2^{4} \times 5^{2} \qquad 3^{4} \times 3^{6} = a^{4} \times a^{6} = 1$$

$$1 \cdot (b) + 4^{2} \times 4^{3} \Rightarrow 4^{2 + 3} \Rightarrow 4^{13} \qquad a^{6} = 1$$

$$1 \cdot (b) + 4^{2} \times 4^{3} \Rightarrow 4^{2 + 3} \Rightarrow 4^{13} \qquad a^{6} = 1$$

$$1 \cdot (b) + 4^{2} \times 4^{3} \Rightarrow 4^{2 + 3} \Rightarrow 4^{13} \qquad a^{6} = 1$$

$$2) \cdot (c) + \frac{12 \cdot 3^{2}}{3 \cdot 4} = 4 \Rightarrow (c) + \frac{16 \cdot 4^{2} \cdot 9^{2}}{4 \times 3} = 4 \times 3$$

$$3) + (a) + \frac{12 \cdot 3^{2}}{3 \cdot 4} = 4 \Rightarrow (c) + \frac{16 \cdot 4^{2} \cdot 9^{2}}{4 \times 3} = 4 \times 3$$

$$3) + (a) + (x^{2} - x^{2})^{3} \Rightarrow x^{6} \cdot y^{6} = (n) + (x \cdot y^{6})^{4} \Rightarrow x^{4} \cdot y^{24} = (a) + (x^{2} - y^{2})^{6} = 1$$

$$\frac{-\xi \chi \ 3 \cdot 8}{(4 \ (a) \ 12 \ \chi^{6} \ (b) \ 34 \ \chi^{3} \ (cl) \ \frac{\chi^{4}}{4\chi^{2}} = \frac{\chi^{2}}{4}$$
(e) $11 \ \chi^{3} \chi \ (a^{2} \ b)^{2} \ \Rightarrow \ 11 \ \chi^{3} \chi \ 4a^{4} \ b^{2} \ \Rightarrow \ 44 \ a^{4} \ b^{2} \ x^{3}$
(f) $4 \ \chi \ (\chi^{2}+7) \ \Rightarrow \ 4\chi^{3} + 28 \ \chi$
(i) $\frac{7\chi^{2} \ \chi^{2}}{(\chi^{3} \ d)^{2}} \ \Rightarrow \ \frac{7\chi^{2} \ d^{2}}{\chi^{6} \ d^{2}} \ \Rightarrow \ \frac{7}{\chi^{4}}$
(j) $\frac{4\chi^{2} \chi^{3} \ \chi^{3}}{(\chi^{3} \ d)^{2}} \ \Rightarrow \ \frac{7\chi^{2} \ d^{2}}{\chi^{6} \ d^{2}} \ \Rightarrow \ \chi^{4}$
(i) $\frac{1}{(\chi^{2} \chi^{3})^{2}}{(\chi^{3} \ d)^{2}} \ \Rightarrow \ \frac{12\chi^{6}}{\chi^{6}} \ \Rightarrow \ \chi^{4}$
(j) $\frac{4\chi^{2} \chi^{2} \ \chi^{3}}{(\chi^{3} \ d)^{2}} \ \Rightarrow \ \frac{12\chi^{6}}{(\chi^{3} \ d^{3})^{3}} \ \Rightarrow \ \frac{12\chi^{4}}{(\chi^{3} \ d^{3})^{3}} \ \Rightarrow \ \frac{12\chi^{4}}{(\chi^{3} \ d^{3})^{3}} \ \Rightarrow \ \frac{12\chi^{4}}{(\chi^{3} \ d^{3})^{3}} \ \Rightarrow \ 4\chi^{3}$
(j) $\frac{4\chi^{4} \chi^{2} \ \chi^{3}}{(\chi^{3})^{3}} \ \Rightarrow \ \frac{16\chi^{4} \ d^{6}}{(\chi^{3} \ d^{3})^{3}} \ \Rightarrow \ 4\chi^{3}$
(j) $\frac{4\chi^{4} \chi^{2} \ \chi^{3}}{(\chi^{3})^{3}} \ \Rightarrow \ \frac{16\chi^{4} \ d^{6}}{(\chi^{3} \ d^{3})^{3}} \ \Rightarrow \ \frac{12\chi^{4}}{(\chi^{3} \ d^{3})} \ = \ \chi^{4}$
(k) $\frac{1}{\chi^{2}} \ (b) \ \frac{1}{\chi^{3}} \ (c) \ \frac{1}{\chi^{3}} \ (d) \ \frac{2}{\chi^{2}} \ (d) \ \frac{12}{\chi^{3}} \ d^{3}} \ = \ \chi^{4}$
(k) $\frac{1}{\chi^{4}} \ = \ \frac{1}{\chi^{3}} \ (d) \ \frac{1}{\chi^{4}} \ = \ \frac{1}{\chi^{3}} \ (d) \ \frac{1}{\chi^{4}} \ d^{3}} \ = \ \chi^{4}$
(k) $\frac{1}{\chi^{4}} \ d^{4} \ d^{4}$

1	Evaluate:
	a $8^{\frac{1}{2}}$ b $32^{\frac{1}{2}}$ c $8^{\frac{4}{2}}$ d $216^{\frac{3}{2}}$ e $256^{0.75}$
2	Simplify: a $x^{\frac{1}{2}} \times x^{\frac{1}{2}}$ b $x^{\frac{1}{2}} \times x^{\frac{3}{2}}$ c $\left(\frac{x^4}{x^{10}}\right)^{\frac{1}{2}}$ d $\left(\frac{x^6}{y^2}\right)^{\frac{1}{2}}$
	e $\frac{x^{\frac{3}{2}}}{x^{\frac{3}{2}}}$ f $\frac{7}{8}x^{\frac{1}{2}} + \frac{1}{2}x^{-\frac{1}{2}}$ g $\frac{2x^{\frac{1}{2}}}{x^{\frac{1}{2}}}$ h $\frac{9x^{\frac{1}{2}}}{12x^{\frac{3}{2}}}$
	i $\frac{1}{2}x^{\frac{1}{2}} + 2x^2$ j $-\frac{1}{2}x^{\frac{3}{4}} + -2x^{-\frac{1}{4}}$ k $\frac{3}{4}x^{\frac{1}{2}} + \frac{1}{2}x^{-\frac{1}{4}}$ l $-\frac{1}{4}x^{\frac{3}{4}} + -2x^{-\frac{1}{4}}$
3	Find the value of x in each of these equations.
	a $2^x = 64$ b $196^x = 14$ c $x^{\frac{1}{3}} = 7$
	d $(x-1)^{\frac{3}{4}} = 64$ e $3^x = 81$ f $4^x = 256$
	g $2^{-x} = \frac{1}{64}$ h $3^{x-1} = 81$ i $9^{-x} = \frac{1}{81}$
	j $3^{-x} = 81$ k $64^x = 2$ l $16^x = 8$ m $4^{-x} = \frac{1}{64}$

Ex 2.10

1 (4) $(2^3)^{\frac{1}{3}} = 2$ (b) $32^{\frac{1}{5}} \Rightarrow (2^5)^{\frac{1}{5}} \Rightarrow 2$ (c) 8^{3/3} ⇒ (2³)^{4/3} ⇒ 2⁴ ⇒ 16 (d) $216^{2/3} \Rightarrow (6^3)^{2/3} \Rightarrow 6^2 \Rightarrow 36$ (e) (256)^{75/100} => 256 => 2^{8×3}/₄ => 2⁶ => 64 $2 \cdot (\alpha) \chi^{\frac{1}{3} + \frac{1}{3}} \Rightarrow \chi^{\frac{2}{3}} (c) (\chi^{4 - 10})^{1/2} \Rightarrow \chi^{-6\chi^{\frac{1}{2}}} \Rightarrow \chi^{3} \Rightarrow \chi^{3}$ $(d) \left(\frac{\chi^{6}}{y^{2}}\right)^{1/2} \Rightarrow \frac{\chi^{3}}{y} \qquad (f) \quad \frac{7}{8} \chi^{1/2} \Rightarrow \frac{7}{8} \chi^{2} \chi^{1/2} \chi^{1/2} \\ \qquad \frac{1}{2} \chi^{1/2} \Rightarrow \frac{7}{9} \chi \qquad \left[\chi^{1/2 + 1/2} \chi\right]$ $(h) \frac{9x^{1/3}}{12x^{4/3}} \neq \frac{9x^{1/3}}{12} \neq \frac{3}{12} x^{1/3} \neq \frac{1-4}{3} \Rightarrow \frac{3}{4} x^{-1} \Rightarrow \frac{3}{4} x^{-1} \Rightarrow \frac{3}{4} x^{-1}$ $(1) \quad \frac{1}{2} x^{1/2} \div 2x^2 \quad \Rightarrow \quad \frac{1}{2} x^{\frac{1}{2}} \xrightarrow{\chi^2} \Rightarrow \frac{1}{2} x^{\frac{1}{2}} \xrightarrow{\chi^2} \Rightarrow \frac{1}{2} x^{\frac{1}{2}} \xrightarrow{\chi^2} \Rightarrow \frac{1}{2} x^{\frac{1}{2}} \xrightarrow{\chi^2}$ $\Rightarrow \frac{1}{4} \chi^{-3/2} \Rightarrow \frac{1}{4} \chi^{3/2}$ (K) $\frac{3}{4} \chi^{1/2} \div \frac{1}{2} \chi^{-1/4} \Rightarrow \frac{3}{4} \chi^{\frac{2}{1}} \frac{\chi^{1/2}}{\chi^{-1/4}} \Rightarrow \frac{3}{2} \chi^{\frac{3}{1}} \Rightarrow \frac{3}{2} \chi^{\frac{3}{1}}$ 3) (a) $2^{x} = 2^{6} \Rightarrow x = 6 | (d) (x-1)^{3|4} = 64$ (x-1) 3/4×4 4 (b) 14²² = 14 $14^{2x} = 14'$ $2x = 1 \Rightarrow x = \frac{1}{2}$ $(x-1)^{3} = (4^{3})^{4}$ $(x-1)^3 = (4^4)^3$ (c) $x^{1/3} = 7$ x-1=4 => x-1=256 on cubing both sides $(\pi^{1/3})^3 = 7^3 \Rightarrow \chi = 343$ (e) $3^{\chi} = 81 \Rightarrow 3^{\chi} = 3^{4}$

2=4

Ex 2.10
$(f) q^{\chi} = 256 \Rightarrow q^{\chi} = q^{\chi} \Rightarrow \chi = q$
(8) $2^{-\chi} = \frac{1}{64} \Rightarrow 2^{-\chi} = 2^{-6} \Rightarrow \chi = 6$
$ \begin{array}{c} (4) 3^{\chi-1} = 81 \Rightarrow \chi-1 = 4 \Rightarrow \chi=5 \\ \left\{3^{\chi-1} = 3^{\chi}\right\} \end{array} $
(i) $g^{-\chi} = \frac{1}{g^2} \Rightarrow g^{-\chi} = g^{-2} \Rightarrow \chi = 2$
(j) $3^{-\chi} = 81 \Rightarrow 3^{-\chi} = 3^{-\chi} \Rightarrow \chi = -4$
(K) $64^{\chi} = 2 \Rightarrow 2^{6\chi} = 2 \Rightarrow 6\chi = 1 \Rightarrow \chi = \frac{1}{6}$
(d) $16^{\chi} = 8 \Rightarrow 2^{4\chi} = 2^{3} \Rightarrow 4\chi = 3 \Rightarrow \chi = \frac{3}{4}$
$(m) 4^{-\chi} = \frac{1}{64} \Rightarrow 4^{-\chi} = 4^{-3} \Rightarrow \chi = 3$

Reflex Angles

(e) <KLM = 210 360-210 = 150

(f) ∠JKL = 355 ⇒ 360 - 5 ⇒ 355

 $c = 40' (V \cdot 0 \cdot 2' *)$ $b = 72' (alt \cdot 2' *)$ a + b + 40 = 180' a = 180 - (72 + 40) = 180 - 112 a = d = 68' $k = c = 40' (alt \cdot 1 * 1 \cdot 2' *)$

9

GRADE: 9	SUBJECT: Mathematics	DATE: 26.03.2020
WORKSHEET NUMBER: 1	WORKSHEET TOPIC: INTEGERS, POWERS AND ROOTS	
INSTRUCTION (IF ANY): https://youtu.be/K9XXk0HDmMA		

Answer the following questions:

- 1. List all the factors of (a) 90 (b) 160
- 2. Determine both the H.C.F. and L.C.M. of: (a) 42 and 70 (b) 75 and 120
- 3. Which is greater and by how much $8^0 \times 4^4$ or $2^4 \times 3^4$
- 4. Simplify :
 - (a) $24 \div 8x(16-5)$ (b) $5+36\div 6-8$ (c) $6x[20\div 4)-(6-3)+2]$
- 5. Express 65238 correct to
 - (i) 4 significant figures (ii) 3 significant figures (iii) 1 significant figure
- 6. Find the cube root of the following: (i) 5832
- (ii) 15625
- 7. Evaluate: (i) $V(2^3 \times 3^2 \times 6)$ (ii) $V(41^2 36^2)$

GRADE: 9	SUBJECT: Mathematics	DATE: 02.04.2020
WORKSHEET NUMBER: 2	WORKSHEET TOPIC: Reviewing Num	ber Concepts
INSTRUCTION (IF ANY):	https://youtu.be/2eDmJRoDogM	

Answer the following questions:

- 1. Find the prime factors of (a) 225 (b) 400 (c) 512
- 2. Find a value of p to make each of these statements true:
 - (a) p x p x p = 729(b) p x p = 441(c) $\sqrt{p} = 9$ (d) $\sqrt[3]{p} = 8000$
- 3. Calculate:

(a)	8 ³	(b) 12 ³
(c)	14 ³	$(d) 68^2$

- 4. Find the length of the edge of a cube with a volume of:
 - (a) 1000 cm^3 (b) 19683 cm^3 (c) 68921 mm^3 (d) 64000 cm^3

5. Express 3568 correct to

(i) 3 significant figures (ii) 2 significant figures (iii) 1 significant figure

Cambridge Assessment

GRADE: 9	SUBJECT: Mathematics	DATE: 09.04.2020
WORKSHEET NUMBER: 3	WORKSHEET TOPIC: Exponents	
INSTRUCTION (IF ANY):	https://youtu.be/_IJSDEfqKYE	

Laws of Exponents:

1. $a^m \ge a^n = a^{m+n}$	For example: $5^5 \ge 5^3 = 5^{5+3} = 5^8$
2. $a^m \div a^n = a^{m-n}$	For example: $5^5 \div 5^3 = 5^{5-3} = 5^2$
3. $(a^m)^n = a^{m \times n}$	For example: $(5^3)^2 = 5^{3 \times 2} = 5^6$
4. $a^m x b^m = (a x b)^m$	For example: $2^4 \times 3^4 = (2x3)^4 = 6^4$
5. $a^0 = 1$	For example: $8^0 = 1$
6. $a^{-m} = 1 / a^{m}$	For example: $5^{-3} = 1 / 5^3$

WORKSHEET - 3 (Exponents)

1. Simplify each expression. Write the answer in index (power notation) form:

(i)	$11^3 \ge 11^6$	(ii)	$12^{14} \div 12^{6}$
(iii)	$5^3 \div 5^4$	(iv)	$8^5 \ge 8^2 \ge 8^3$

2. Simplify each expression:

	(i) $4^3 \times 3^3$	$(ii) (3^4)^2$
	(iii) $6^{12} \div 6^8$	(iv) $5^3 \times 5^2$
3.	Write each number as a po	wer of 3:
	(i) 81	(ii) 729
	(iii) 1/27	(iv) 1/243

4. Write the following numbers in ascending order:

 1^{12} 34 6² 12^{1} 2^{6} 4³

- 5. Write each expression as a single number:
 - (i) 4⁻¹ + 8⁻¹ (ii) $3^2 + 3^1 + 3^0 + 3^{-1} + 3^{-2}$

Note: • Apply BODMAS rule:

В	Brackets first
0	Orders (i.e. Powers and Square Roots, etc.)
DM	Division and Multiplication (left-to-right)
AS	Addition and Subtraction (left-to-right)

Divide and Multiply rank equally (and go left to right).

Add and Subtract rank equally (and go left to right).

• When you have more than one set of brackets in a calculation. You work out the innermost set first.

WORKSHEET – 4 (Reviewing number concepts)

- 1. Insert brackets into the following calculations to make them true:
 - (i) $3 \times 4 + 6 = 30$
 - (ii) $36 \div 3 \ge 3 3 = 6$
 - (iii) $1 + 4 \ge 20 \div 5 = 20$
 - (iv) $3 + 8 \times 15 9 = 66$
 - (v) $9 4 \times 7 + 2 = 45$
- 2. Simplify:
 - (i) $(8+3) \ge (30 \div 3) \div 11$ (ii) $\{2 - [4(2-7) - 4(3+8)] - 2 \ge 8\}$
 - (iii) $15 + 30 \div 3 + 6$
 - (iv) $6 \times [(20 \div 4) (6 3) + 2]$
 - (v) 200 [(4 + 12) (6 + 2)]
- 3. Each * represents a missing operation (i.e. +; -; x or \div). Work out what it is.
 - (i) 12 * (28 * 24) = 3
 - (ii) 84 * 10 * 8 = 4
 - (iii) 23 * 11 * 22 * 11 = 11
 - (iv) 40 * 5 * (7 * 5) = 4

(v) 9 * 15 * (3 * 2) = 12

4. Round each number to 2 decimal places:

(i)	38.3456	(ii)	8.299
(iii)	0.005	(iv)	7.34876

Cambridge Assessment International Education	SANSKAR SCHOOL The Revival of Tradition	## REURE INTERNATIONAL SCHOOL AWARD 2019-2019	
GRADE: 9 (IGCSE Year – 1)	SUBJECT: MATHEMATICS	DATE: 23.04.2020	
WORKSHEET NUMBER: 5	WORKSHEET TOPIC: Making sense of Algebra (Chapter – 2)		
INSTRUCTION (IF ANY):	https://youtu.be/MBmKw4VCqKw		

Algebraic Expression:

An algebraic expression in mathematics is an expression which is made up of variables and constants along with algebraic operations (addition, subtraction, etc.) Expressions are made up of terms.

For example: 5m - 3, is an algebraic expression, in which 5m and 3 are two terms.

- m is a **Variable**, whose value is unknown to us which can take any value.
- 5 is known as the **Coefficient** of m, as it is a constant value used with the variable term and is well defined.
- 3 is the **Constant** value term which has a definite value.

How to derive algebraic expressions?

An algebraic expression is a combination of constant, variables and algebraic operations $(+, -, \times, \div)$. We can derive the algebraic expression for a given situation or condition by using these combinations.

For example, suppose the average height (in cm) of students in your class be h,

A student who is 10 cm taller than the average would have a height of (h + 10) cm,

so this is an algebraic expression.

Applying the Rules:

Algebraic expression should be written in the shortest, simplest possible way:

- 2 x h is written as 2h (no need to put multiplication sign between them).
- h means 1 x h, but you do not write the 1.
- $h \div 2$ is written as h/2.

• When you have the product of a number and a variable, the number is written first so we write 2h and not h2. Also, variables are normally written in alphabetical order so pqr and 2ab rather than rqp and 2ba.

WORKSHEET – 5 (Algebra)

- 1. Rewrite each expression in simplest form:
 - (i) 6 x a x b (ii) 6 x m x m x m
 - (iii) $2 \ge a \ge a \div 5$ (iv) $9 \ge (a + 4) \div (2 \ge a)$
- 2. Let the unknown number be 'm'. Write expression for:
 - (i) The difference between 25 and the unknown number.
 - (ii) The unknown number squared.
 - (iii) Three times the unknown number plus seven.
 - (iv) The sum of the unknown number and fifteen.
- 3. A CD and a DVD cost 'd' dollars:
 - (i) If the CD cost \$ 10, what does the DVD cost?
 - (ii) If the DVD cost three times the CD, what does the CD cost?
 - (iii) If the CD cost (d 15), what does the DVD cost?
- 4. A woman is 'y' years old:
 - (i) How old was she ten years ago?
 - (ii) How old will she be in 15 years' time?
 - (iii) Her son is half her age. How old is the son?
- 5. Evaluate the following expression for y = 3
 - (i) $6 y^2$ (ii) 7y 4
 - (iii) $(y^3 + y^2) \div 4$ (iv) $6(y + 4) \div (2y)$

Cambridge Assessment International Education	Subject: MATHEMATICS		
GRADE: 9 (IGCSE Year – 1)	SUBJECT: MATHEMATICS DATE: 22.06.2020		
WORKSHEET NUMBER: 6	WORKSHEET TOPIC: Lines, Angles and Shapes (Chapter – 3)		
INSTRUCTION (IF ANY):	Use a ruler and a protractor.		
	Draw diagrams (angles) with pencil.		

WORKSHEET - 6 (Lines and Angles)

- 1. Use a ruler and a protractor to accurately draw the following angles:
 - (i) Angle ABC = 125°
 - (ii) Angle PQR = 75°
 - (iii) Angle KLM = 150°
 - (iv) Angle $EFG = 225^{\circ}$
 - (v) Angle $XYZ = 320^{\circ}$
- Two angles are complementary. The first angle is twice the size of the second. What are their sizes?
- 3. One of the angles formed when two lines intersect is 84⁰. What are the sizes of the other three angles?

Cambridge Assessment International Education	SANSKAR SCHOOL The Revival of Tradition		
GRADE: 9 (IGCSE Year – 1)	SUBJECT: MATHEMATICS DATE: 22.06.2020		
WORKSHEET NUMBER: 7	WORKSHEET TOPIC: Lines, Angles and Shapes (Chapter – 3)		
INSTRUCTION (IF ANY):	Use a ruler and a protractor.		
	Draw diagrams (angles) with pencil.		

1. In the given figure AB \parallel CD, ${\scriptstyle \angle}$ BEO = 125°, ${\scriptstyle \angle}$ CFO = 40°. Find the measure of ${\scriptstyle \angle}$ EOF.

2. In the given figure AB || CD || EF and AE \perp AB. Also, \angle BAE = 90°. Find the values of $\angle x$, $\angle y$ and $\angle z$.

3. In the given figure, AB \parallel ED, ED \parallel FG, EF \parallel CD. Also, $\angle 1$ = 60°, $\angle 3$ = 55°, then find $\angle 2, \ \angle 4, \ \angle 5.$

Cambridge Assessment International Education	SUBJECT: MATHEMATICS		
GRADE: 9 (IGCSE Year – 1)	SUBJECT: MATHEMATICS DATE: 29.06.2020		
WORKSHEET NUMBER: 8	WORKSHEET TOPIC: Lines, Angles and Shapes (Chapter – 3)		
INSTRUCTION (IF ANY):	Use a ruler and a protractor.		
	Draw diagrams (angles) with pencil.		

WORKSHEET – 8 (Angle sum property of triangle)

- 1) Two angles of a triangle are of measures 75 ^o and 35 ^o. Find the measures of the third angle.
- 2) Of the three angles of a triangle, one is twice the smallest and another is three times the smallest. Find the angles.
- 3) If the angles of a triangle are in the ratio 2:3:4, determine the three angles.
- 4) Find the value of *x* in the following triangle.

5) Find the value of *x* in the following triangle.

Cambridge Assessment International Education	SUBJECT: MATHEMATICS		
GRADE: 9 (IGCSE Year – 1)	SUBJECT: MATHEMATICS DATE: 29.06.2020		
WORKSHEET NUMBER: 9	WORKSHEET TOPIC: Angle sum property of Quadrilateral (Ch – 3)		
INSTRUCTION (IF ANY):	Use a ruler and a protractor.		
	Draw diagrams (angles) with pencil.		

WORKSHEET – 9 (Angle sum property of Quadrilateral)

- 1) The three angles of quadrilateral are 60° , 70° , 90° . Find the fourth angle?
- 2) If three angles of quadrilateral are equal and the measure of the fourth angle is 30°, find the measure of each of the equal angle?
- 3) If the four angles of quadrilateral are in the ratio of 9 : 8 : 4 : 15, find the measures of each angle?
- 4) If the measure of two angles of a quadrilateral are 55° and 75° and the other two angles are equal, find the measure of each of the equal angles?

Cambridge Assessment International Education	SANSKAR SCHOOL The Revival of Tradition	HIRDIRH INTERNATIONAL SCHOOL ANARD 2016-2019
GRADE: 9 (IGCSE Year – 1)	SUBJECT: MATHEMATICS	DATE: 06.07.2020
WORKSHEET NUMBER: 10	WORKSHEET TOPIC: Polygons (Ch – 3)	
INSTRUCTION (IF ANY):	CALCULATOR ALLOWED.	

WORKSHEET - 10 (Polygons)

- **1.** Calculate the sum of the interior angles of a regular polygon with:
 - (a) 8 sides (b) 15 sides
- **2.** Find the number of sides of a polygon whose each interior angle is:
 - (a) 165° (b) 135°
- 3. Find each interior angle in a regular polygon of
 - (a) 10 sides (b) 16 sides
- **4.** Find the number of sides of a polygon, the sum of whose interior angle is:
 - (a) 1800° (b) 1260°

Cambridge Assessment International Education	SUBJECT MATUSMATICS		
GRADE: 9 (IGCSE Year – 1)	SUBJECT: MATHEMATICS DATE: 10.07.2020		
WORKSHEET NUMBER: 11	WORKSHEET TOPIC: Fractions and Standard form (Ch – 5)		
INSTRUCTION (IF ANY):	https://youtu.be/0b-J9gT22tA		

WORKSHEET – 11 (Fractions and Standard form)

1. Find four equivalent fractions of the following:

(a) 3/5	(b) 5/7	(c) 4/9
(u) 5/5	(0) J I	

2. Express each of the following fractions in its simplest form:

(0) 15/55 (0) 15/65 (0) 2+6/500	(a) 15/35	(b) 13/65	(c) 240/360
---------------------------------	-----------	-----------	-------------

- **3.** Evaluate:
 - (i) 7/11 by 3/7
 (ii) 3/5 by 25
 (iii) 3⁴/₁₅ by 45
 (iv) 3¹/₈ by 48
- 4. Each side of a square is $6^{2}/_{3}$ m long. Find its area.

Cambridge Assessment International Education	Standard of Stadition		
GRADE: 9 (IGCSE Year – 1)	SUBJECT: MATHEMATICS DATE: 13.07.2020		
WORKSHEET NUMBER: 12	WORKSHEET TOPIC: Fractions and Standard form (Ch – 5)		
INSTRUCTION (IF ANY):	https://youtu.be/0b-J9gT22tA		

WORKSHEET – 12 (Fractions and Standard form)

1. Simplify:

(a) 0.3/15	(b) 0.5/30	(c) 0.4/2.4
2. Evaluate:		
(a) 2/5 of 45	(b) 3/7 of 42	2 (c) 2/3 of 81
3. Divide:		
(i) 17/11 by 17/33	3	
(ii) 3/5 by 21/45		
(iii) 2/9 by 16/27		

<u>REVISION TEST</u> M.M. - 10

Q.1 Two angles are complementary. The first angle is twice the size of the second.What are their sizes? (2)

Q.2 Find each interior angle in a regular polygon of 10 sides

Q.3 Simplify each expression. Write the answer in index (power notation) form:

(i) $12^{18} \div 12^7$ (ii) $(7^2)^3$ (2)

Q4 Simplify: (5x + 7) (2x + 3) - (3x + 2) (2x - 5) (2)

Q5 If the measure of two angles of a quadrilateral are 55° and 75° and the other two angles are equal, find the measure of each of the equal angles?

(2)

(2)

Cambridge Assessment International Education	SANSKAR SCHOOL Street of Street internet Street in the Street internet Street	
GRADE: 9 (IGCSE Year – 1)	SUBJECT: MATHEMATICS DATE: 10.08.2020	
WORKSHEET NUMBER: 14	WORKSHEET TOPIC: Fractions and Standard form (Ch – 5)	
INSTRUCTION (IF ANY):	https://youtu.be/0b-J9gT22tA	

WORKSHEET – 14 (Fractions and Standard form)

1. Write each of the following in standard form:

(a) 14 3000000	(b) 850000	(c) 0.0000065	(d) 0.00312
----------------	------------	---------------	-------------

2. Write each of the following as ordinary number

(a)
$$3.6 \times 10^4$$
 (b) 4.27×10^7 (c) 4.65×10^{-5} (d) 1.23×10^{-7}

3. Find the number of seconds in a day. Write your answer in standard form?

Cambridge Assessment International Education	SANSKAR SCHOOL The Revival of Tradition	II RUBRI INTERNATIONAL SCHOOL AVARD 2016-2019
GRADE: 9 (IGCSE Year – 1)	SUBJECT: MATHEMATICS	DATE: 13.08.2020
WORKSHEET NUMBER: 15	WORKSHEET TOPIC: Equations and rearranging formulae (Ch – 6)	
INSTRUCTION (IF ANY):		

WORKSHEET – 15 (Equations and rearranging formulae)

1. Expand and simplify your answers as far as possible:

(a) $-5(2a+3b)$	(b) - 10(2t - 7)
(c) $2.5(4p + 2q)$	(d) $7(3a - 5b + 4c)$
(e) - 8(6m - 7n)	(f) 7.5(6p + 8q)
(g) $10a + 5(2a + 5)$	(h) $2m(3m-5) + 3m(7-5m)$

Cambridge Assessment International Education	SANSKAR SCHOOL The Revival of Tradition	ITERURER INTERNATIONAL SCHOOL ANARD 2016-2019
GRADE: 9 (IGCSE Year – 1)	SUBJECT: MATHEMATICS	DATE: 17.08.2020
WORKSHEET NUMBER: 16	WORKSHEET TOPIC: Equations and rearranging formulae (Ch – 6)	
INSTRUCTION (IF ANY):		

WORKSHEET – 16 (Equations and rearranging formulae)

1. Solve the following equations:

- (c) 4p + 2 = 12p 14 (d) 7 3a = 5a + 4
- (e) 13m 21 = 6m 7 (f) 11p 7 = 6p + 18
- (g) 10a + 5 = 5(3a + 5) (h) 2(3m 5) = 4(8 5m)

Cambridge Assessment International Education	SANSKAR SCHOOL The Revival of Tradition	ERIURE INTERNATIONAL SCHOOL ANARD 2016-2019
GRADE: 9 (IGCSE Year – 1)	SUBJECT: MATHEMATICS	DATE: 20.08.2020
WORKSHEET NUMBER: 17	WORKSHEET TOPIC: Equations and rearranging formulae (Ch – 6)	
INSTRUCTION (IF ANY):		

WORKSHEET – 17 (Rearrangement of a formula)

1. Make the variable shown in brackets the subject of the formula in each case:

(i)
$$a - b = c$$
 (b) (ii) $t + u = s$ (u)

- (iii) p q = r (p) (iv) a(n m) = t (m)
- (v) (m-n)/r = s (m) (f) (x-y)/z = t (x)
- (g) v = u + at (t)