Ene 2.3
1.a) $6 x, 4 x, x \leftarrow$ Like terms (having same Variable $-2 y$
(e) $5 a, 6 a$
(f) $-1 x y,-y x$
$5 a b, a b$

$$
-2 y
$$

5
$3 x$
3
2. (k) $6 p q-2 q p \Rightarrow 6 p q-2 p q \Rightarrow 4 p q$
3. (e)

$$
\begin{aligned}
4 x y-2 y+2 x y & \Rightarrow 4 x y+2 x y-2 y \\
& \Rightarrow 6 x y-2 y
\end{aligned}
$$

(p) $5 x^{2} y+3 x^{2} y-2 x y \Rightarrow 8 x^{2} y-2 x y$
4. (g)

$$
\begin{aligned}
& 4 x y z-3 x y+2 x z-x y z \\
& 4 x y z-x y z-3 x y+2 x z \Rightarrow 3 x y z-3 x y+2 x z
\end{aligned}
$$

Ex 2.4
\rightarrow we multiply unlike terms.

1. (d) $2 x \times 3 y \Rightarrow 6 x y$
(f) $4 \times 2 x \times 3 x^{2} y \Rightarrow 4 \times 2 \times 3 x^{3} y \Rightarrow 24 x^{3} y$
(l) $4 y \times 2 x \times 3 y \Rightarrow 4 \times 2 \times 3 x^{2} y \Rightarrow 24 x^{2} y$
2. (m) $7 x y+2 x z+3 y z$

$$
\Rightarrow 7 \times 2 \times 3 x^{2} y^{2} z^{2} \Rightarrow 42 x^{2} y^{2} z^{2}
$$

Ex 2.5
1 Expand :

$$
a(b+c)=a b+a c
$$

(a) $2(x+6) \Rightarrow 2 x+12$
(c) $4(2 x+3) \Rightarrow 8 x+12$ (e) $4(x-2) \Rightarrow 4 x-8$
(m) $5(2 x-2 y) \Rightarrow 10 x-10 y$ (r) $7\left(4 x+x^{2}\right) \Rightarrow 28 x+7 x^{2}$
2. (a) $2 x(x+y) \Rightarrow 2 x^{2}+2 x y$
(d) $4 x(3 x-2 y) \Rightarrow 12 x^{2}-8 x y$
(h) $2 x^{2}(3-2 y) \Rightarrow 6 x^{2}-4 x^{2} y$ (m) $2 x^{2} y(y-2 x) \Rightarrow 2 x^{2} y^{2}-4 x^{3} y$
3. $A=L \times B$
(a) $x(x+7) \Rightarrow x^{2}+7 x$
(b) $2 x\left(x^{2}-1\right) \Rightarrow 2 x^{3}-2 x$
(c) $4 x(x-1) \Rightarrow 4 x^{2}-4 x$

E×2.6

1 (a)

$$
\begin{aligned}
& 2(5+x)+3 x \Rightarrow 10+2 x+3 x \Rightarrow 10+5 x \\
& \hline 4 x-8
\end{aligned}
$$

(c) $2 x+2(x-4) \Rightarrow 2 x+2 x-8 \Rightarrow 4 x-8$
(i) $2 x+3+2(2 x+3) \Rightarrow 2 x+3+4 x+6 \Rightarrow 6 x+9$
(l) $7 y+y(x-4)-4 \Rightarrow 7 y+x y-4 y-4 \Rightarrow x y+3 y-4$
2. (a) $4(x+40)+2(x-3) \Rightarrow 4 x+160+2 x-6$

$$
\Rightarrow 6 x+154
$$

(e)

$$
\begin{aligned}
4\left(x^{2}+2\right)+2\left(4-x^{2}\right) & \Rightarrow 4 x^{2}+8+8-2 x^{2} \\
& \Rightarrow 2 x^{2}+16
\end{aligned}
$$

(g)

$$
\begin{aligned}
& 3 x(4 y-4)+4(3 x y+4 x) \\
& \Rightarrow 12 x y-12 x+12 x y+16 x \Rightarrow 24 x y+4 x
\end{aligned}
$$

Ex 2.7

1) (a) 2^{5}
(b) 3^{4}
(C) 7^{2}
(d) 11^{3}
(e) 10^{5} (Index form)
2)(a) $10^{4}=10 \times 10 \times 10 \times 10 \Rightarrow 10,000$
(b) $7^{3}=7 \times 7 \times 7 \Rightarrow 343$
2) $64=2 \times 2 \times 2 \times 2 \times 2 \times 2 \Rightarrow 2^{6}$
(b) $243=3^{5}$
(c) $400=2^{4} \times 5^{2}$

3	243
3	81
3	27
3	9
3	3
	1

$\varepsilon_{x} 2.8$
Lavs of Exponents:

$$
\begin{aligned}
& a^{m} \times a^{n}=a^{m+n} \\
& a^{m} \div a^{n}=a^{m-n} \\
& \left(a^{m}\right)^{n}=a^{m \times n} \\
& a^{0}=1
\end{aligned}
$$

2	400
2	2000
2	100
2	50
5	25
5	5

1. (b) $4^{2} \times 4^{9} \Rightarrow 4^{2+9} \Rightarrow 4^{11}$
(d) $x^{9} \times x^{4} \Rightarrow x^{9+4} \Rightarrow x^{13}$
(j) $3 y^{2} \times 3 y^{4} \Rightarrow 3 \times 3 \times y^{2+4} \Rightarrow 9 y^{6}$
(0) $4 x^{6} \times 2 x \Rightarrow 8 x^{7}$
2). (i) $\frac{12 y^{2}}{3 y}=4 y$ (n) $\frac{16 x^{2} y^{2}}{4 x y}=4 x y$
3) (a) $\left(x^{2}\right)^{2} \Rightarrow x^{4}$
(d) $\left(y^{3}\right)^{2} \Rightarrow y^{6}$
(i) $\left(x^{2} y^{2}\right)^{3} \Rightarrow x^{6} y^{6} \quad$ (h) $\left(x y^{6}\right)^{4} \Rightarrow x^{4} y^{24}$
(0) $\left(\frac{x^{2}}{y}\right)^{0}=1$
$\varepsilon x 2.8$
4 (a) $12 x^{6}$
(b) $24 x^{3} y$
(d) $\frac{x^{4}}{4 x^{2}}=\frac{x^{2}}{4}$
(e) $11 x^{3} \times 4\left(a^{2} b\right)^{2} \Rightarrow 11 x^{3} \times 4 a^{4} b^{2} \Rightarrow 44 a^{4} b^{2} x^{3}$
(f) $4 x\left(x^{2}+7\right) \Rightarrow 4 x^{3}+28 x$
(i) $\frac{7 x^{2} y^{2}}{\left(x^{3} y\right)^{2}} \Rightarrow \frac{7 x^{2} y^{2}}{x^{6} y^{2}} \Rightarrow \frac{7}{x^{4}}$
(j) $\frac{4 x^{2} \times 3 x^{4}}{6 x^{4}} \Rightarrow \frac{12 x^{6}}{6 x^{4}} \Rightarrow 2 x^{2}$
(0) $\frac{\left(4 x^{2} y^{3}\right)^{2}}{(2 x y)^{3}} \Rightarrow \frac{16 x^{4} y^{6}}{4 x^{3} y^{3}} \Rightarrow 4 x y^{3}$
$\varepsilon_{x} \cdot 2 \cdot 9$
1.(a) $4^{-1}=\frac{1}{4}$
(c) $8^{-1}=\frac{1}{8}$
(d) $5^{-3} \Rightarrow \frac{1}{5^{3}} \Rightarrow \frac{1}{125}$
2. (a) T
(b) $F\left(\frac{1}{64}\right)$
(c) $F\left(\frac{1}{x^{3}}\right)$
(d) $F\left(\frac{2}{x^{2}}\right)$
3. (a) $\frac{1}{x^{2}}$
(b) $\frac{1}{y^{3}}$
(C) $\frac{1}{x^{2} y^{2}}$
(d) $\frac{2}{x^{2}}$
(e) $\frac{12}{x^{3}}$
(g) $\frac{8 x}{y^{3}}$
(h) $\frac{12}{x^{3} y^{4}}$
4. (a) $x^{-3+4} \Rightarrow x^{1}$
(b) $\frac{2}{x^{3}} \times \frac{3}{x^{3}} \Rightarrow \frac{6}{x^{6}}$
(c) $\frac{4 x^{3}}{12 x^{2}}=\frac{1}{3} x$
(d) $\frac{1}{x^{7} \times x^{4}} \Rightarrow \frac{1}{x^{11}}$
(e) $2 x^{-6} \Rightarrow \frac{2}{x^{6}}$
(g) $\frac{x^{4}}{x^{3}}=x$
a $8^{\frac{1}{1}}$
b $32^{\frac{1}{5}}$
c 8^{1}
d 216^{3}
e 256^{075}

2 Simplify:
a $x^{\dagger} \times x^{\dagger}$
b $x^{\frac{1}{2}} \times x^{\frac{1}{3}}$
c $\left(\frac{x^{4}}{x^{10}}\right)^{\frac{1}{4}}$
d $\left(\frac{x^{6}}{y^{2}}\right)^{\frac{1}{2}}$
e $\frac{x^{\frac{4}{4}}}{x^{4}}$
f $\frac{7}{8} x^{\frac{1}{2}}+\frac{1}{2} x^{-\frac{1}{7}}$
g $\frac{2 x^{\frac{3}{3}}}{x^{\frac{3}{3}}}$
h $\frac{9 x^{\frac{j}{3}}}{12 x^{\frac{4}{4}}}$
i $\frac{1}{2} x^{\frac{4}{2}}+2 x^{2}$
j $-\frac{1}{2} x^{\frac{2}{2}}+-2 x^{-4}$
k $\frac{3}{4} x^{\frac{4}{4}}+\frac{1}{2} x^{-\frac{1}{4}}$
1 $-\frac{1}{4} x^{\frac{2}{4}} \div-2 x^{-\frac{1}{4}}$

3 Find the value of x in each of these equations.
a $2^{x}=64$
b $196^{x}=14$
c $x^{b}=7$
d $(x-1)^{\frac{2}{2}}=64$
e $3^{x}=81$
f $4^{x}=256$
g $\quad 2^{-x}=\frac{1}{64}$
h $\quad 3^{x-1}=81$
i $\quad 9^{-x}=\frac{1}{81}$
j $\quad 3^{-x}=81$
k $64^{x}=2$
l $\quad 16^{x}=8$
m $\quad 4^{-x}=\frac{1}{64}$

Ex 2.10
1 (4) $\left(2^{3}\right)^{\frac{1}{3}}=2$
(b) $32^{\frac{1}{5}} \Rightarrow\left(2^{5}\right)^{\frac{1}{5}} \Rightarrow 2$
(c) $8^{\frac{4}{3}} \Rightarrow\left(2^{3}\right)^{\frac{4}{3}} \Rightarrow 2^{4} \Rightarrow 16$
(d) $216^{2 / 3} \Rightarrow\left(6^{3}\right)^{2 / 3} \Rightarrow 6^{2} \Rightarrow 36$
(e) $(256)^{75 / 100} \Rightarrow 256^{3 / 4} \Rightarrow 2^{8 \times \frac{3}{4}} \Rightarrow 2^{6} \Rightarrow 64$
2. (a) $x^{\frac{1}{3}+\frac{1}{3}} \Rightarrow x^{\frac{2}{3}} \quad$ (c) $\left(x^{4-10}\right)^{1 / 2} \Rightarrow x^{-6 \times \frac{1}{2}} \Rightarrow x^{-3} \Rightarrow \frac{1}{x^{3}}$
(d) $\left(\frac{x^{6}}{y^{2}}\right)^{1 / 2} \Rightarrow \frac{x^{3}}{y}$
(f) $\frac{\frac{7}{8} x^{1 / 2}}{\frac{1}{2} x^{-1 / 2}} \Rightarrow \frac{7}{8} \times \frac{2}{1} x^{1 / 2} \times x^{1 / 2}$

$$
\begin{aligned}
& \Rightarrow \frac{1}{8} \times \frac{1}{1} \\
& \Rightarrow \frac{7}{4} x \quad\left[x^{1 / 2+1 / 2}=x\right]
\end{aligned}
$$

(h) $\frac{9 x^{1 / 3}}{12 x^{4 / 3}} \Rightarrow \frac{9}{12} x^{1 / 3-\frac{4}{3}} \Rightarrow \frac{3}{4} x^{\frac{1-4}{3}} \Rightarrow \frac{3}{4} x^{-1} \Rightarrow \frac{3}{4 x}$
(i)

$$
\begin{aligned}
& \frac{1}{2} x^{1 / 2} \div \frac{2}{1} x^{2} \Rightarrow \frac{1}{2} \times \frac{1}{2} \frac{x^{1 / 2}}{x^{2}} \Rightarrow \frac{1}{4} x^{1 / 2-\frac{2}{1}} \Rightarrow \frac{1}{4} x^{\frac{1-4}{2}} \\
& \Rightarrow \frac{1}{4} x^{-3 / 2} \Rightarrow \frac{1}{4 x^{3 / 2}}
\end{aligned}
$$

(k) $\frac{3}{4} x^{1 / 2} \div \frac{1}{2} x^{-1 / 4} \Rightarrow \frac{3}{4} \times \frac{2}{1} \frac{x^{1 / 2}}{x^{-1 / 4}} \Rightarrow \frac{3}{2} x^{1 / 2+1 / 4} \Rightarrow \frac{3}{2} x^{3 / 4}$
3) (a)

$$
2^{x}=2^{6} \Rightarrow x=6
$$

(d)

$$
\begin{aligned}
& (x-1)^{3 / 4}=64 \\
& (x-1)^{3 / y \times 4}=64^{4} \\
& (x-1)^{3}=\left(4^{3}\right)^{4} \\
& (x-1)^{3}=\left(4^{4}\right)^{3} \\
& x-1=4^{4} \Rightarrow x-1=256 \\
& x=257
\end{aligned}
$$

$$
\left(x^{1 / 3}\right)^{3}=7^{3} \Rightarrow x=343
$$

(e) $3^{x}=81 \Rightarrow 3^{x}=3^{4}$

$$
x=4
$$

$$
\varepsilon \times 2.10
$$

(f) $4^{x}=256 \Rightarrow 4^{x}=4^{4} \Rightarrow x=4$
(g) $2^{-x}=\frac{1}{64} \Rightarrow 2^{-x}=2^{-6} \Rightarrow x=6$
(h)

$$
\begin{aligned}
& 3^{x-1}=81 \Rightarrow x-1=4 \Rightarrow x=5 \\
& \left\{3^{x-1}=3^{4}\right\}
\end{aligned}
$$

(i) $g^{-x}=\frac{1}{9^{2}} \Rightarrow 9^{-x}=9^{-2} \Rightarrow x=2$
(j) $3^{-x}=81 \Rightarrow 3^{-x}=3^{4} \Rightarrow x=-4$
(K) $64^{x}=2 \Rightarrow 2^{6 x}=2^{1} \Rightarrow 6 x=1 \Rightarrow x=\frac{1}{6}$
(l) $16^{x}=8 \Rightarrow 2^{4 x}=2^{3} \Rightarrow 4 x=3 \Rightarrow x=\frac{3}{4}$
(m) $4^{-x}=\frac{1}{64} \Rightarrow 4^{-x}=4^{-3} \Rightarrow x=3$

Reflex Angles
(e) $\angle K L M=210^{\circ} \quad 360^{\circ}-210^{\circ} \Rightarrow 150^{\circ}$

(f)

$$
\begin{aligned}
& \angle J K L=355^{\circ} \\
& \Rightarrow 360^{\circ}-5^{\circ} \\
& \Rightarrow 355^{\circ}
\end{aligned}
$$

Ex 3.4
(a)

(b)

$$
\begin{aligned}
& x=105^{\circ} \\
& z=45^{\circ} \\
& \left(\text { alt. Int. } L^{\prime} s\right)
\end{aligned}
$$

also $x+y+z=180^{\circ}$ (st. line)

$$
105+y+45=180^{\circ}
$$

$$
y=180^{\circ}-150^{\circ} \Rightarrow 30^{\circ}
$$

(C)

$$
\begin{aligned}
& c=40^{\circ}\left(V \cdot 0 \cdot L^{\prime} s\right) \\
& b=72^{\circ}(\text { alt. L's }) \\
& a+b+40=180^{\circ} \\
& a=180-(72+40) \Rightarrow 180-112 \\
& a=d=68^{\circ} \\
& \angle e=c=40^{\circ} \text { (llt. Int. L's) }
\end{aligned}
$$

圈膡 Cambridge Assessment International Education	SGITSRGR SCFOOL The Rewicat of Sxadition	
GRADE: 9	SUBJECT: Mathematics	DATE: 26.03.2020
WORKSHEET NUMBER: 1	WORKSHEET TOPIC: INTEGERS, POWERS AND ROOTS	
INSTRUCTION (IF ANY):	https://youtu.be/K9XXkOHDmMA	

Answer the following questions:

1. List all the factors of $\begin{array}{lll}\text { (a) } 90 & \text { (b) } 160\end{array}$
2. Determine both the H.C.F. and L.C.M. of: (a) 42 and 70 (b) 75 and 120
3. Which is greater and by how much $8^{0} \times 4^{4}$ or $2^{4} \times 3^{4}$
4. Simplify :
(a) $24 \div 8 x(16-5)$
(b) $5+36 \div 6-8$
(c) $6 \times[20 \div 4)-(6-3)+2]$
5. Express 65238 correct to
(i) 4 significant figures
(ii) 3 significant figures
(iii) 1 significant figure
6. Find the cube root of the following:
(i) 5832
(ii) 15625
7. Evaluate:
(i) $V\left(2^{3} \times 3^{2} \times 6\right)$
(ii) $V\left(41^{2}-36^{2}\right)$

Answer the following questions:

1. Find the prime factors of
(a) 225
(b) 400
(c) 512
2. Find a value of p to make each of these statements true:
(a) $\mathrm{pxpxp}=729$
(b) $\mathrm{p} \times \mathrm{p}=441$
(c) $\sqrt{p}=9$
(d) $\sqrt[3]{p}=8000$
3. Calculate:
(a) 8^{3}
(b) 12^{3}
(c) 14^{3}
(d) 68^{2}
4. Find the length of the edge of a cube with a volume of:
(a) $1000 \mathrm{~cm}^{3}$
(b) $19683 \mathrm{~cm}^{3}$
(c) $68921 \mathrm{~mm}^{3}$
(d) $64000 \mathrm{~cm}^{3}$
5. Express 3568 correct to
(i) 3 significant figures (ii) 2 significant figures (iii) 1 significant figure

Whas Cambridge Assessment	SGINISRER SCMOOL The Revienal of Sradition	
GRADE: 9	SUBJECT: Mathematics	DATE: 09.04.2020
WORKSHEET NUMBER: 3	WORKSHEET TOPIC: Exponents	
INSTRUCTION (IF ANY):	https://youtu.be/_IJSDEfqKYE	

Laws of Exponents:

1. $\mathrm{a}^{\mathrm{m}} \mathrm{x} \mathrm{a}^{\mathrm{n}}=\mathrm{a}^{\mathrm{m}+\mathrm{n}}$
2. $\mathrm{a}^{\mathrm{m}} \div \mathrm{a}^{\mathrm{n}}=\mathrm{a}^{\mathrm{m}-\mathrm{n}}$
3. $\left(\mathrm{a}^{\mathrm{m}}\right)^{\mathrm{n}}=\mathrm{a}^{\mathrm{mxn}}$
4. $\mathrm{a}^{\mathrm{m}} \mathrm{xb}^{\mathrm{m}}=(\mathrm{axb})^{\mathrm{m}}$
5. $a^{0}=1$
6. $\mathrm{a}^{-\mathrm{m}}=1 / \mathrm{a}^{\mathrm{m}}$

For example: $5^{5} \times 5^{3}=5^{5+3}=5^{8}$
For example: $5^{5} \div 5^{3}=5^{5-3}=5^{2}$
For example: $\left(5^{3}\right)^{2}=5^{3 \times 2}=5^{6}$
For example: $2^{4} \times 3^{4}=(2 \times 3)^{4}=6^{4}$
For example: $8^{0}=1$
For example: $5^{-3}=1 / 5^{3}$

WORKSHEET - 3 (Exponents)

1. Simplify each expression. Write the answer in index (power notation) form:
(i) $11^{3} \times 11^{6}$
(ii) $12^{14} \div 12^{6}$
(iii) $5^{3} \div 5^{4}$
(iv) $8^{5} \times 8^{2} \times 8^{3}$
2. Simplify each expression:
(i) $4^{3} \times 3^{3}$
(ii) $\left(3^{4}\right)^{2}$
(iii) $6^{12} \div 6^{8}$
(iv) $5^{3} \times 5^{2}$
3. Write each number as a power of 3 :
(i) 81
(ii) 729
(iii) $1 / 27$
(iv) $1 / 243$
4. Write the following numbers in ascending order:

1^{12}	2^{6}	3^{4}	4^{3}	6^{2}	12^{1}

5. Write each expression as a single number:
(i) $4^{-1}+8^{-1}$
(ii) $3^{2}+3^{1}+3^{0}+3^{-1}+3^{-2}$

(1) Cambridge Assessment		
GRADE: 9 (IGCSE Year - 1)	SUBJECT: MATHEMATICS	DATE: 16.04.2020
WORKSHEET NUMBER: 4	WORKSHEET TOPIC: Reviewing number concepts (Chapter - 1)	
INSTRUCTION (IF ANY):	CALCULATOR ALLOWED.	

Note: • Apply BODMAS rule:

B Brackets first
O Orders (i.e. Powers and Square Roots, etc.)
DM Division and Multiplication (left-to-right)
AS Addition and Subtraction (left-to-right)

Divide and Multiply rank equally (and go left to right).
Add and Subtract rank equally (and go left to right).

- When you have more than one set of brackets in a calculation. You work out the innermost set first.

WORKSHEET - 4 (Reviewing number concepts)

1. Insert brackets into the following calculations to make them true:
(i) $3 \times 4+6=30$
(ii) $36 \div 3 \times 3-3=6$
(iii) $1+4 \times 20 \div 5=20$
(iv) $3+8 \times 15-9=66$
(v) $9-4 \times 7+2=45$
2. Simplify:
(i) $(8+3) \times(30 \div 3) \div 11$
(ii) $\{2-[4(2-7)-4(3+8)]-2 \times 8\}$
(iii) $15+30 \div 3+6$
(iv) $6 \times[(20 \div 4)-(6-3)+2]$
(v) $200-[(4+12)-(6+2)]$
3. Each * represents a missing operation (i.e. $+;-$; \mathbf{x} or \div). Work out what it is.
(i) $12 *(28 * 24)=3$
(ii) $84 * 10 * 8=4$
(iii) $23 * 11 * 22 * 11=11$
(iv) $40 * 5 *(7 * 5)=4$
(v) $9 * 15 *(3 * 2)=12$
4. Round each number to 2 decimal places:
(i) 38.3456
(ii) 8.299
(iii) 0.005
(iv) 7.34876

(1) Cambridge Assessment		88 期言 INTERN SCHOO 2016-2019
GRADE: 9 (IGCSE Year - 1)	SUBJECT: MATHEMATICS	DATE: 23.04 .2020
WORKSHEET NUMBER: 5	WORKSHEET TOPIC: Making sense of Algebra (Chapter - 2)	
INSTRUCTION (IF ANY):	https://youtu.be/MBmKw4VCqKw	

Algebraic Expression:

An algebraic expression in mathematics is an expression which is made up of variables and constants along with algebraic operations (addition, subtraction, etc.) Expressions are made up of terms.

For example: $5 m-3$, is an algebraic expression, in which $5 m$ and 3 are two terms.

- m is a Variable, whose value is unknown to us which can take any value.
- 5 is known as the Coefficient of m, as it is a constant value used with the variable term and is well defined.
- 3 is the Constant value term which has a definite value.

How to derive algebraic expressions?

An algebraic expression is a combination of constant, variables and algebraic operations $(+,-, \times, \div)$. We can derive the algebraic expression for a given situation or condition by using these combinations.

For example, suppose the average height (in cm) of students in your class be h ,
A student who is 10 cm taller than the average would have a height of $(\mathrm{h}+10) \mathrm{cm}$,
so this is an algebraic expression.

Applying the Rules:

Algebraic expression should be written in the shortest, simplest possible way:

- 2 xh is written as 2 h (no need to put multiplication sign between them).
- h means 1 xh , but you do not write the 1 .
- $\mathrm{h} \div 2$ is written as $\mathrm{h} / 2$.
- When you have the product of a number and a variable, the number is written first so we write 2 h and not h2. Also, variables are normally written in alphabetical order so pqr and 2 ab rather than rqp and 2 ba .

WORKSHEET - 5 (Algebra)

1. Rewrite each expression in simplest form:
(i) $6 \times \mathrm{axb}$
(ii) $6 \times \mathrm{mx} \mathrm{mx} \mathrm{m}$
(iii) $2 \times \mathrm{xaxa} \div 5$
(iv) $9 \times(a+4) \div(2 \times$ a $)$
2. Let the unknown number be ' \mathbf{m} '. Write expression for:
(i) The difference between 25 and the unknown number.
(ii) The unknown number squared.
(iii) Three times the unknown number plus seven.
(iv) The sum of the unknown number and fifteen.
3. A CD and a DVD cost 'd' dollars:
(i) If the CD cost $\$ 10$, what does the DVD cost?
(ii) If the DVD cost three times the CD, what does the CD cost?
(iii) If the CD cost $\$(\mathrm{~d}-15)$, what does the DVD cost?
4. A woman is ' \mathbf{y} ' years old:
(i) How old was she ten years ago?
(ii) How old will she be in 15 years' time?
(iii) Her son is half her age. How old is the son?
5. Evaluate the following expression for $y=3$
(i) $6 y^{2}$
(ii) $7 y-4$
(iii) $\left(y^{3}+y^{2}\right) \div 4$
(iv) $6(y+4) \div(2 y)$

International Education	SFISMGR 5 CHOOL The Rewital of Sradition	INTERNATIONAL
GRADE: 9 (IGCSE Year-1)	SUBJECT: MATHEMATICS	DATE: 22.06.2020
WORKSHEET NUMBER: 6	WORKSHEET TOPIC: Lines, Angles and Shapes (Chapter - 3)	
INSTRUCTION (IF ANY):	Use a ruler and a protractor. Draw diagrams (angles) with pencil.	

WORKSHEET - 6 (Lines and Angles)

1. Use a ruler and a protractor to accurately draw the following angles:
(i) Angle $\mathrm{ABC}=125^{\circ}$
(ii) Angle $\mathrm{PQR}=75^{0}$
(iii) Angle KLM $=150^{\circ}$
(iv) Angle $\mathrm{EFG}=225^{\circ}$
(v) Angle $\mathrm{XYZ}=320^{\circ}$
2. Two angles are complementary. The first angle is twice the size of the second. What are their sizes?
3. One of the angles formed when two lines intersect is 84^{0}. What are the sizes of the other three angles?

Cambridge Assessment	SGITSRER SCHOOL The Revival of Sradition	Is INTERNATATIONAL
GRADE: 9 (IGCSE Year - 1)	SUBJECT: MATHEMATICS	DATE: 22.06.2020
WORKSHEET NUMBER: 7	WORKSHEET TOPIC: Lines, Angles and Shapes (Chapter - 3)	
INSTRUCTION (IF ANY):	Use a ruler and a protractor. Draw diagrams (angles) with pencil.	

1. In the given figure $A B \| C D, \angle B E O=125^{\circ}, \angle C F O=40^{\circ}$. Find the measure of $\angle E O F$.

2. In the given figure $A B\|C D\| E F$ and $A E \perp A B$. Also, $\angle B A E=90^{\circ}$. Find the values of $\angle x, \angle y$ and $\angle z$.

3. In the given figure, $A B\|E D, E D\| F G, E F \| C D$. Also, $\angle 1=60^{\circ}, \angle 3=55^{\circ}$, then find $\angle 2, \angle 4, \angle 5$.

Cambridge Assessment	SGINSRGR SCMOOL The Rewienal of Suadition	38 RURA INTERNATIONAL
GRADE: 9 (IGCSE Year - 1)	SUBJECT: MATHEMATICS	DATE: 29.06.2020
WORKSHEET NUMBER: 8	WORKSHEET TOPIC: Lines, Angles and Shapes (Chapter - 3)	
INSTRUCTION (IF ANY):	Use a ruler and a protractor. Draw diagrams (angles) with pencil.	

WORKSHEET - 8 (Angle sum property of triangle)

1) Two angles of a triangle are of measures 75° and 35°. Find the measures of the third angle.
2) Of the three angles of a triangle, one is twice the smallest and another is three times the smallest. Find the angles.
3) If the angles of a triangle are in the ratio $2: 3: 4$, determine the three angles.
4) Find the value of x in the following triangle.

5) Find the value of x in the following triangle.

Cambridge Assessment International Education	$\begin{aligned} & \text { SGIRISRIR } \\ & \text { SGBIORL } \end{aligned}$ Stie Reviecal of Sradition	I2 2 URIL INTERNATIONAL
GRADE: 9 (IGCSE Year - 1)	SUBJECT: MATHEMATICS	DATE: 29.06.2020
WORKSHEET NUMBER: 9	WORKSHEET TOPIC: Angle sum property of Quadrilateral (Ch - 3)	
INSTRUCTION (IF ANY):	Use a ruler and a protractor. Draw diagrams (angles) with pencil.	

WORKSHEET - 9 (Angle sum property of Quadrilateral)

1) The three angles of quadrilateral are $60^{\circ}, 70^{\circ}, 90^{\circ}$. Find the fourth angle?
2) If three angles of quadrilateral are equal and the measure of the fourth angle is 30°, find the measure of each of the equal angle?
3) If the four angles of quadrilateral are in the ratio of $9: 8: 4: 15$, find the measures of each angle?
4) If the measure of two angles of a quadrilateral are 55° and 75° and the other two angles are equal, find the measure of each of the equal angles?

(r) Cambridge Assessment	SGINISNGR SCHOOL She Rewitak of Sradition	
GRADE: 9 (IGCSE Year - 1)	SUBJECT: MATHEMATICS	DATE: 06.07.2020
WORKSHEET NUMBER: 10	WORKSHEET TOPIC: Polygons (Ch - 3)	
INSTRUCTION (IF ANY):	CALCULATOR ALLOWED.	

WORKSHEET - 10 (Polygons)

1. Calculate the sum of the interior angles of a regular polygon with:
(a) 8 sides
(b) 15 sides
2. Find the number of sides of a polygon whose each interior angle is:
(a) 165°
(b) 135°
3. Find each interior angle in a regular polygon of
(a) 10 sides
(b) 16 sides
4. Find the number of sides of a polygon, the sum of whose interior angle is:
(a) 1800°
(b) 1260°

Cambridge Assessment		
GRADE: 9 (IGCSE Year - 1)	SUBJECT: MATHEMATICS	DATE: 10.07.2020
WORKSHEET NUMBER: 11	WORKSHEET TOPIC: Fractions and Standard form (Ch - 5)	
INSTRUCTION (IF ANY):	https://youtu.be/Ob-J9gT22tA	

WORKSHEET - 11 (Fractions and Standard form)

1. Find four equivalent fractions of the following:
(a) $3 / 5$
(b) $5 / 7$
(c) $4 / 9$
2. Express each of the following fractions in its simplest form:
(a) $15 / 35$
(b) $13 / 65$
(c) $240 / 360$
3. Evaluate:
(i) $7 / 11$ by $3 / 7$
(ii) $3 / 5$ by 25
(iii) $3^{4 / 15}$ by 45
(iv) $3^{1 / 8}$ by 48
4. Each side of a square is $6^{2} / 3 \mathrm{~m}$ long. Find its area.

Cambridge Assessment		
GRADE: 9 (IGCSE Year - 1)	SUBJECT: MATHEMATICS	DATE: 13.07.2020
WORKSHEET NUMBER: 12	WORKSHEET TOPIC: Fractions and Standard form (Ch - 5)	
INSTRUCTION (IF ANY):	https://youtu.be/Ob-J9gT22tA	

WORKSHEET - 12 (Fractions and Standard form)

1. Simplify:
(a) $0.3 / 15$
(b) $0.5 / 30$
(c) $0.4 / 2.4$
2. Evaluate:
(a) $2 / 5$ of 45
(b) $3 / 7$ of 42
(c) $2 / 3$ of 81
3. Divide:
(i) $17 / 11$ by $17 / 33$
(ii) $3 / 5$ by $21 / 45$
(iii) $2 / 9$ by $16 / 27$

	$\begin{aligned} & \text { SGNSKGRR } \\ & \text { SCHIOL } \end{aligned}$ She Revicuat of Sradition	
GRADE: 9	SUBJECT: MATHEMATICS	DATE: 17.07.2020

REVISION TEST

M.M. - 10
Q. 1 Two angles are complementary. The first angle is twice the size of the second.

What are their sizes?
(2)
Q. 2 Find each interior angle in a regular polygon of 10 sides
(2)
Q. 3 Simplify each expression. Write the answer in index (power notation) form:
(i) $12^{18} \div 12^{7}$
(ii) $\left(7^{2}\right)^{3}$
Q4 Simplify: $\quad(5 x+7)(2 x+3)-(3 x+2)(2 x-5)$
(2)

Q5 If the measure of two angles of a quadrilateral are 55° and 75° and the other two angles are equal, find the measure of each of the equal angles?

Cambridge Assessment		
GRADE: 9 (IGCSE Year - 1)	SUBJECT: MATHEMATICS	DATE: 10.08.2020
WORKSHEET NUMBER: 14	WORKSHEET TOPIC: Fractions and Standard form (Ch - 5)	
INSTRUCTION (IF ANY):	https://youtu.be/Ob-J9gT22tA	

WORKSHEET - 14 (Fractions and Standard form)

1. Write each of the following in standard form:
(a) 1430000000
(b) 850000
(c) 0.0000065
(d) 0.00312
2. Write each of the following as ordinary number
(a) 3.6×10^{4}
(b) 4.27×10^{7}
(c) 4.65×10^{-5}
(d) 1.23×10^{-7}
3. Find the number of seconds in a day. Write your answer in standard form?

(rex Cambridge Assessment	SGIRSMRIR The ReviciaE of Sradition	
GRADE: 9 (IGCSE Year - 1)	SUBJECT: MATHEMATICS	DATE: 13.08.2020
WORKSHEET NUMBER: 15	WORKSHEET TOPIC: Equations and rearranging formulae (Ch - 6)	
INSTRUCTION (IF ANY):		

WORKSHEET - 15 (Equations and rearranging formulae)

1. Expand and simplify your answers as far as possible:
(a) $-5(2 a+3 b)$
(b) $-10(2 \mathrm{t}-7)$
(c) $2.5(4 \mathrm{p}+2 \mathrm{q})$
(d) $7(3 a-5 b+4 c)$
(e) $-8(6 m-7 n)$
(f) $7.5(6 p+8 q)$
(g) $10 a+5(2 a+5)$
(h) $2 m(3 m-5)+3 m(7-5 m)$

Cambridge Assessment	$\begin{aligned} & \text { SGINSMRIR } \\ & \text { SGBOOL } \end{aligned}$ The Revienal of Sradition	
GRADE: 9 (IGCSE Year - 1)	SUBJECT: MATHEMATICS	DATE: 17.08.2020
WORKSHEET NUMBER: 16	WORKSHEET TOPIC: Equations and rearranging formulae (Ch - 6)	
INSTRUCTION (IF ANY):		

WORKSHEET - 16 (Equations and rearranging formulae)

1. Solve the following equations:
(a) $2 \mathrm{a}+3=13$
(b) $2 t-7=5$
(c) $4 \mathrm{p}+2=12 \mathrm{p}-14$
(d) $7-3 \mathrm{a}=5 \mathrm{a}+4$
(e) $13 m-21=6 m-7$
(f) $11 p-7=6 p+18$
(g) $10 \mathrm{a}+5=5(3 \mathrm{a}+5)$
(h) $2(3 \mathrm{~m}-5)=4(8-5 \mathrm{~m})$

(rex Cambridge Assessment	SGIRSMRIR The ReviciaE of Sradition	
GRADE: 9 (IGCSE Year - 1)	SUBJECT: MATHEMATICS	DATE: 20.08.2020
WORKSHEET NUMBER: 17	WORKSHEET TOPIC: Equations and rearranging formulae (Ch-6)	
INSTRUCTION (IF ANY):		

WORKSHEET - 17 (Rearrangement of a formula)

1. Make the variable shown in brackets the subject of the formula in each case:
(i) $\mathrm{a}-\mathrm{b}=\mathrm{c}$
(b)
(ii) $\mathrm{t}+\mathrm{u}=\mathrm{s}$
(u)
(iii) $\mathrm{pq}=\mathrm{r}$
(p)
(iv) $\mathrm{a}(\mathrm{n}-\mathrm{m})=\mathrm{t}$
(m)
(v) $(\mathrm{m}-\mathrm{n}) / \mathrm{r}=\mathrm{s} \quad(\mathrm{m})$
(f) $(\mathrm{x}-\mathrm{y}) / \mathrm{z}=\mathrm{t}$
(x)
$(g) v=u+a t$
(t)
